§ 4. Потенциал электростатического поля. Энергия системы зарядов

Электростатическое поле — это потенциальное поле. Понятие о потенциальных силовых полях было введено в курсе механики. Поле называется потенциальным, если работа сил этого поля при перемещении из одной точки в другую не зависит от формы траектории, а определяется только начальным и конечным положениями.

Потенциальным является любое центральное поле, в котором сила зависит только от расстояния до силового центра и направлена по радиусу. Доказательство этого утверждения рассматривалось в курсе механики. Электростатическое поле, создаваемое уединенным точечным зарядом, описывается законом Кулона. Это поле сферически-симметрично и представляет собой частный случай центрального поля. Отсюда следует потенциальный характер электростатического поля точечного заряда.

В соответствии с принципом суперпозиции напряженность электростатического поля, создаваемого любым, сколь угодно сложным распределением неподвижных зарядов, представляет собой векторную сумму напряженностей полей, создаваемых каждым зарядом в отдельности. Сила, действующая на перемещаемый пробный заряд, определяется полной напряженностью поля. Поэтому работа при перемещении пробного заряда равна сумме работ сил, действующих со стороны отдельных точечных зарядов. Работа каждой такой силы не зависит от формы траектории. Поэтому и суммарная работа — работа результирующей силы — также не зависит от траектории, что и доказывает потенциальный характер любого электростатического поля.

Потенциальная энергия. Для заряда в электростатическом поле, как и в случае любого потенциального поля, можно ввести понятие потенциальной энергии. Потенциальная энергия заряда в любой точке поля определяется как работа, совершаемая силами поля при перемещении заряда из этой точки в некоторую фиксированную точку, потенциальная энергия в которой принята равной нулю. Можно сказать и иначе: эта потенциальная энергия равна работе, совершаемой внешними силами при переносе заряда из выбранной фиксированной точки в данную точку поля. Выбор фиксированной точки нулевого значения потенциальной энергии произволен. Поэтому потенциальная энергия заряда в поле определена с точностью до некоторой аддитивной постоянной. Такая неоднозначность потенциальной энергии никак не сказывается на физических результатах, поскольку во всех конкретных расчетах имеет значение только изменение энергии при переносе заряда из одной точки поля в другую.

Потенциал электрического поля. Действующая на заряд Формула потенциала сила Формула потенциала в электрическом поле Е пропорциональна заряду: Формула потенциала Поэтому и совершаемая при некотором перемещении заряда работа, и его

lib.sernam.ru

  Потенциал электрического поля представляет собой отношение потенциальной энергии к заряду. Как известно электрическое поле является потенциальным. Следовательно, любое тело находящиеся в этом поле обладает потенциальной энергией. Любая работа, которая будет совершаться полем, будет происходить за счет уменьшения потенциальной энергии.

  Потенциал электрического поля это энергетическая характеристика поля. Он представляет собой работу которую нужно совершить против сил электрического поля для того чтобы переместить единичный положительный точечный заряд находящийся на бесконечности в данную точку поля.

  Измеряется потенциал электрического поля в вольтах.

  В случае если поле создается несколькими зарядами, которые расположены в произвольном порядке. Потенциал в данной точке такого поля будет представлять собой алгебраическую сумму всех потенциалов, которые создают заряды каждый в отдельности. Это так называемый принцип суперпозиции.

  Допустим, что в электрическом поле заряд перемещается из точки "a" в точку "b". Работа совершается против силы электрического поля. Соответственно потенциалы в этих точках будут отличаться.

  Разность потенциалов двух точек поля будет равна одному Вольту, если для того чтобы переместить заряд в один кулон между ними необходимо совершить работу в один джоуль.

 Если заряды имеют одинаковые знаки, то потенциальная энергия взаимодействия между ними будет положительна. В этом случае заряды отталкиваются друг от друга.

 Для разноименных зарядов энергия взаимодействия будет отрицательна. Заряды в этом случае будут, притягивается друг к другу.

 

« Пред.   След. »

electrophysic.ru

Тестирование онлайн

  • Потенциал, работа поля. Основные понятия

  • Потенциал, работа поля

  • Домашняя работа. Потенциал, работа поля

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Формула потенциала
Формула потенциалаФормула потенциала

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Формула потенциалаФормула потенциалаФормула потенциала

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Формула потенциалаФормула потенциала

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Формула потенциалаФормула потенциала

Эту формулу можно представить в ином виде

Формула потенциалаФормула потенциала

Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

Формула потенциалаФормула потенциала

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Формула потенциала

fizmat.by

Потенциальность поля

Важным свойством электрического поля, как поля не имеющего вихрей и созданного одними неподвижными источниками, является его потенциальность.

Электрическое поле называется потенциальным, если работа, которую совершает носитель заряда в таком поле, при перемещении его по любому замкнутому контуру равняется нулю.

Гравитационное поле силы тяжести также является потенциальным. Если поднять груз определенной массы на некоторую высоту, а затем опустить его обратно на поверхность Земли, в прежнюю точку, то полная механическая работа будет также равна нулю. Причем, совершенно не важно по какой траектории осуществлялся подъем и спуск груза. Источником такого гравитационного поля является в этом примере Земля (тело с массой во много раз большей чем масса поднимаемого груза).

Электростатическое поле, то есть такое поле, которое образовано неподвижными электрическими зарядами, также обладает аналогичной потенциальностью. Работа носителя заряда при его перемещении по замкнутому контуру в электростатическом поле будет равняться нулю. Траектория такого перемещения замкнута и называется контуром и эта траектория может быть любого вида, принципиальное значение имеет ее замкнутость, а не форма.

Потенциал электростатического поля

На рисунке изображены разные траектории движения заряда в электростатическом поле плоского конденсатора. Не имеет значения по какому маршруту двигался заряд (картинка слева), совершенная им работа будет одинаковой, то есть A1=A2=A3. На правом изображении показано движение заряда по замкнутому контуру. Начальная и конечная точки поля совпадают. Заряд двигался из точки 1, затем 2, 3, и снова прибыл в точку 1, тем самым образовав замкнутую траекторию, то есть контур. В этом случае говорят, что совершенная им механическая работа равна нулю.

Потенциал

Так как электростатическое поле является потенциальным, то в нем каждая точка пространства имеет потенциал характеризующий это поле. Для гравитационного поля это будет гравитационный потенциал, а для электрического — электрический потенциал. Что же такое потенциал и как он определяется?

Потенциалом φ точки электрического поля называется работа, которую нужно затратить, чтобы переместить заряд +q в количестве одного Кулона из бесконечности в данную точку поля, или же работа по перемещению этого же заряда +q из данной точки в бесконечность.

Из определения потенциала получается, что потенциал — это показатель характеризующий работу заряда, то есть это по-сути энергетическая характеристика поля. Что же следует понимать под бесконечностью? Это всё-таки некоторое расстояние, а не математическое понятие ∞. Под бесконечностью в определении потенциала следует понимать такое расстояние в пространстве, на котором поле можно считать равным нулю, то есть напряженность поля в ней настолько мала, что ее можно принять за ноль. Силовые линии электрического поля одиночного заряда уходят в бесконечность и даже в этой бесконечности с противоположной стороны вполне может встретится заряд противоположного знака, и тогда эти две бесконечности встретятся. Вот такое место встречи и есть то место, где влияние поля одиночного заряда равно нулю. Это место нулевого потенциала, где потенциал φ=0, после перехода этой зоны нулевого потенциала его значения поменяют свой знак. В реальной природе, во вселенной, каждый заряд имеет свою противоположную пару и потому точка бесконечности — это точка равновесия, баланса.

Из практических соображений бывает удобно принять некоторую линию или поверхность (эквипотенциальную) равной нулю. Это значит, что относительно некоторого источника электрического поля она всё же имеет некоторое значение, но принимается за ноль из практической необходимости. Получается обоснованная относительная система отсчета потенциалов поля. На этот счёт есть аналогия с гравитационным полем Земли (отсчет от уровня моря), когда влияние гравитации Солнца несущественно, но для высоких орбит космических спутников следует учитывать и гравитацию Солнца. При значительном приближении космического аппарата к Луне, влияние гравитационного потенциала Луны станет первостепенным и потребуется лунная система отсчета. Подобным образом обстоят дела и с электрическим полем Земли. Если в физике при рассмотрении теоретических вопросов выбирают бесконечность, то в электротехнике поступают иначе, и принимают за нулевой потенциал поверхность Земли. Соответственно на определенной высоте от поверхности Земли, в атмосфере, потенциал будет иметь некоторое отличное от нуля значение.

В каком случае понятие потенциала теряет смысл? Если при движении заряда по разным траекториям будет совершатся разная работа, то есть она будет зависеть от формы пути, то здесь потенциал поля не имеет смысла. Итак, понятие потенциала относится только к потенциальному полю.

Потенциальная энергия

Известное в механике понятие потенциальной энергии также относится к потенциальному полю. При отсутствии потенциального поля не может быть никакой речи о потенциальной энергии. Потенциальной энергией тела мы как раз и называем ту работу, которую необходимо затратить, чтобы переместить это тело из бесконечности в данную точку. Иначе говоря, требуется затратить энергию, чтобы перенести тело из области с нулевым потенциалом в область с высоким потенциалом. Опять же, если затрачиваемая работа зависит от формы пути, то нет потенциального поля, а значит невозможно говорить о потенциальной энергии.

Как было уже сказано выше, потенциал — это энергетическая характеристика поля и потому достаточно легко определить потенциальную энергию через потенциал.

Потенциальная энергия Up равна произведению заряда q на потенциал φ.

Формула потенциальной энергии электрического поля

Дата: 01.05.2015

© Valentin Grigoryev (Валентин Григорьев)

www.electricity-automation.com

Разность потенциалов

Разность потенциалов, или напряжение, – одно из основных понятий электротехники. Ее можно определить как работу электрического поля, затраченную на перенос заряда между двумя точками. Тогда на вопрос, что такое потенциал, можно ответить, что это работа по переносу единичного заряда из данной точки в бесконечность.

Как и в случае гравитационных сил, заряд, подобно телу с потенциальной энергией, имеет определенный электрический потенциал при внесении его в электрическое поле. Чем выше напряженность электрического поля, и больше величина заряда, тем выше его электрический потенциал.

Для определения напряжения существует формула:

U=A/q,

которая связывает работу А по перемещению заряда q из одной точки в другую.

Проведя преобразование, получим:

А=Uq.

То есть чем выше напряжение, тем большую работу электрическим полем (электричеством) надо затратить по переносу зарядов.

Данное определение позволяет понять суть мощности источника питания. Чем выше его напряжение, разность потенциалов между клеммами, тем большее количество работы он может обеспечить.

Разность потенциалов измеряется в вольтах. Для измерения напряжения созданы измерительные приборы, которые именуются вольтметрами. Они основаны на принципах электродинамики. Ток, проходя по проволочной рамке вольтметра, под действием измеряемого напряжения создает электромагнитное поле. Рамка находится между полюсами магнитов.

Взаимодействие полей рамки и магнита заставляет последнюю отклониться на некоторый угол. Большая разность потенциалов создает больший ток, в результате угол отклонения увеличивается. Шкала прибора пропорциональна углу отклонения рамки, то есть разности потенциалов и проградуирована в вольтах.

В руках современного электрика имеются не только стрелочные, но и цифровые измерительные приборы, которые не только измеряют электрический потенциал в определенной точке схемы, но и другие величины, характеризующие электрическую цепь. Напряжения в точках измеряются по отношению к другим, которым условно присваивают значение нуля. Тогда измеренное значение между нулевым и потенциальным выводами даст искомое напряжение.

Сказанное выше относится к напряжению как разности потенциалов между двумя зарядами. В электротехнике эта разность измеряется на участке цепи при протекании по нему тока. В случае переменного тока, то есть изменяющего во времени амплитуду и полярность, напряжение в цепи изменяется по такому же закону. Это справедливо только при наличии в схеме активных сопротивлений. Реактивные элементы в цепи переменного тока вызывают сдвиг фазы относительно протекающего тока.

Потенциометры

Напряжение источников питания, в особенности автономных, таких как аккумуляторы, химические источники, солнечные и тепловые батареи, является постоянным и не поддается регулировке. Для получения меньших значений используются, в простейшем случае, потенциометрические делители напряжения с использованием трехвыводного переменного резистора (потенциометра). Как работает потенциометр? Переменный резистор представляет собой резистивный элемент с двумя выводами, по которому может перемещаться контактный ползунок с третьим выводом.

Переменный резистор может включаться двумя способами:

  • Реостатным;
  • Потенциометром.

В первом случае у переменного резистора используются два вывода: один – основной, другой – с ползунка. Перемещая ползунок по телу резистора, изменяют сопротивление. Включив реостат в цепь электрического тока последовательно с источником напряжения, можно регулировать ток в цепи.

Включение потенциометром требует использования всех трех выводов. Основные выводы подключаются параллельно источнику питания, а пониженное напряжение снимается с ползунка и одного из выводов.

Принцип действия потенциометра заключается в следующем. Через резистор, подключенный к источнику питания, проходит ток, который создает падение напряжения между ползунком и крайними выводами. Чем меньше сопротивление между ползунком и выводом, тем меньше напряжение. Данная схема имеет недостаток, она сильно нагружает источник питания, поскольку для корректной и точной регулировки требуется, чтобы сопротивление переменного резистора было в несколько раз меньше сопротивления нагрузки.

Многие понятия в физике схожи и могут служить примером друг другу. Это справедливо и для такого понятия, как потенциал, который может быть как механической величиной, так и электрической. Сам по себе потенциал измерить невозможно, поэтому речь идет о разности, когда один из двух зарядов принимается за точку отсчета – нуль или заземление, как принято в электротехнике.

elquanta.ru

Выражение для потенциала поля точечного заряда имеет вид:

Формула потенциала

Очевидно, что потенциал точек поля положительного заряда Формула потенциала также положителен Формула потенциала а отрицательного Формула потенциала отрицателен Формула потенциала

Формула (8.25) соответствует определенному выбору нулевого уровня потенциала. Принято считать потенциал бесконечно удаленных от заряда точек поля равным нулю: Формула потенциала и Формула потенциала Такой выбор нулевого уровня удобен, но не обязателен. Можно было бы к потенциалу (8.25) прибавить любую постоянную величину. От этого разность потенциалов между любыми точками поля не изменяется, а именно она имеет практическое значение.

Если потенциал бесконечно удаленных точек принят за нулевой, потенциал поля точечного заряда будет иметь простой физический смысл. Подставляя в формулу (8.24) значение Формула потенциала получим

Формула потенциала

Следовательно, потенциал электростатического поля на расстоянии Формула потенциала от точечного заряда численно равен работе поля по перемещению единичного положительного заряда из данной точки пространства в бесконечно удаленную точку.

Формула (8.25) справедлива также и для потенциала поля равномерно заряженного шара на расстояниях, больших или равных его радиусу, так как поле равномерно заряженного шара вне его и на его поверхности совпадает с полем точечного заряда, помещенного в центре сферы.

Мы рассмотрели потенциал поля точечного заряда. Заряд любого тела можно мысленно разделить на столь малые элементы, что каждый из них будет представлять собой точечный заряд. Тогда потенциал поля в произвольной точке определится как алгебраическая сумма потенциалов, создаваемых отдельными точечными зарядами Формула потенциала

Формула потенциала

Это соотношение является следствием принципа суперпозиции полей

Потенциальная энергия взаимодействия двух точечных зарядов. Зная выражение для потенциала поля точечного заряда, можно вычислить потенциальную энергию взаимодействия двух точечных зарядов. Это может быть, в частности, энергия взаимодействия электрона с атомным ядром.

Потенциальная энергия заряда Формула потенциала в электрическом поле точечного заряда Формула потенциала равна произведению заряда Формула потенциала на потенциал Формула потенциала поля заряда Формула потенциала

lib.alnam.ru

Допустим, что в электрическом поле заряд перемещается из точки "a" в точку "b". Работа совершается против силы электрического поля. Соответственно потенциалы в этих точках будут отличаться.

Формула потенциала

Формула 3 — Работа в электрическом поле

Формула потенциала

Рисунок 1 — перемещение заряда в электрическом поле

Разность потенциалов двух точек поля будет равна одному Вольту, если для того чтобы переместить заряд в один кулон между ними необходимо совершить работу в один джоуль.

Если заряды имеют одинаковые знаки, то потенциальная энергия взаимодействия между ними будет положительна. В этом случае заряды отталкиваются друг от друга.

Для разноименных зарядов энергия взаимодействия будет отрицательна. Заряды в этом случае будут, притягивается друг к другу.

Для установления связи между силовой характеристикой электрического поля — напряжённостью и его энергетической характеристикой — потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q Edl, эта же работа равна убыли потенциальной энергии заряда q: dA = — dWп = — q d Формула потенциала , где d Формула потенциала — изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: Edl = -d Формула потенциала или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d Формула потенциала , (1.8)

где Ex, Ey, Ez — проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

Формула потенциала

откуда

Формула потенциала .

Стоящее в скобках выражение является градиентом потенциала j, т. е.

E = — grad Формула потенциала = -Ñ Формула потенциала .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность Eнаправлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен Формула потенциала = q / 4pe0er. Направление радиус-вектора r совпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

Формула потенциала .

Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна

Формула потенциала ,

т. е. в этом направлении потенциал электрического поля является постоянной величиной ( Формула потенциала = const).

В рассмотренном случае направление вектора r совпадает с направлением Формула потенциала
рис. 1.6 силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.

Формула потенциала
рис. 1.7

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали — штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

studopedia.org